DNV

The 1983 and 2003 Blackouts in Sweden

Nordic Electric Power System Seminar Chalmers November 09, 2023

Daniel Karlsson, DNV Adjunct Professor, Chalmers

Presentation Outline

□Introduction to DNV and to myself

Notification of the Hagby Disturbance - 7 Second Fault
 Swedish disturbance 1983-12-27
 Swedish disturbance 2003-09-23
 Concluding remarks

DNV - An Energy Technology Power House

- Established in 1864 Det Norske Veritas
- A foundation focused on
 - Classification Maritime, Oil & Gas
 - Certification ISO standards
 - Energy Systems
 - Generation, Transmission, Distribution and use of Electric Energy
- Investing 5% of the annual revenues in research, development and innovation activities
- Main office in Oslo
- Main Energy hub in Arnhem, Netherlands
- About 20 electrical engineers in Sweden Gothenburg, Malmö, and Stockholm

2000 experts

Largest independent technical advisor for renewable energy, transmission, distribution and use

No. 1

in smart grid testing with laboratories in Arnhem, Madrid and Singapore

>25

standards and guidelines published as a leading certification body

90 years

experience in the power industry, incl. 40 years in wind and energy management and 20 years in solar

Personal Introduction

- Daniel Karlsson
- Senior Principal Engineer, DNV Energy Systems
- Major experiences
 - Power system analysis
 - Power system protection
 - Wide area protection (SPS / SIPS / PMUs)
 - Utility and manufacturer background
 - Sydkraft (now E.ON)
 - ABB (now Hitachi)
 - Gothia Power
 - DNV
 - Academic background
 - Chalmers University of Technology

Hagby 220 kV fault – First notice – A PMU outside Malmö (600 km from Hagby)

• Observations? – With respect to frequency / voltage? - Duration?

Hagby 220 kV fault – First notice – A closer look

• Observations? – With respect to frequency / voltage? - Duration?

Hagby 220 kV fault – First notice – A closer look

If you know what you are looking for – You can see the 7 seconds!

1983-12-27 Swedish National Blackout – 65% of the consumption interrupted

- Preconditions
 - Close to full power transmission from North to South
 - Import from Norway and export to Denmark
 - Total load (in Sweden) 17 000 MW
 - Generation: 64% hydro, 34% nuclear, 2% fossil
 - "Snitt 2" transfer was about 5600 MW (max 6000 MW)
 - Normal voltage and frequency
- Predisturbance events
 - Oskarshamn 1 taken out of operation (12:20)
 - Replaced by hydro from the north and load reduction in the south

The Hamra substation design – and normal operation switching state

- ABC switchgear
- Combined backup and sectionalizing breaker
- One line from North to the Abus and one to the B-bus, and similar for the lines southward
 - A busbar fault with successful bus-split will keep one north-south connection alive

12:25 – Overheated disconnector L3-F1 observed

- Overheated due to high resistance – load current less than rated
- Agreed with the control room to immediately take the disconnector out of operation
- Decided to use the backup breaker and firmly connect bus A and bus B

Switching sequence to use the backup breaker for line L3

- Connect bus A and bus B via the two disconnectors
 - No sectionalizing possibility!
- Connect L3 to bus A via the bus C and BAC-S

- Strategy to be discussed:
 - Maximum mesh?
 - Pros. & Cons.
 - Ref: <u>Headline with light image (svk.se)</u>

Opening breaker L3-S and deloading the disconnector

- At the end of the switching sequence:
 - L3-S was opened and
 L3-F1 was totally deloaded (no current)
 - Everything is nice and stable ...

12:57 – The line end / busbar earthfault

- The final stage in the standardized switching sequence:
 - Open the disconnector
 L3-F1
 - As the disconnector was damaged, it fell apart and caused an earthfault
 - Busbar protection cleared in 3+40 ms (RADSS – Not digital...)

The damaged disconnector in Hamra

de ledningar i överföringssnittet minära bedömningar har dessa bortnorr - söder. Dessa ledningar blev kopplingar skett korrekt. Den samtiner ej kunde genomföras. Åtgärder

Här är den: den trasiga frånskiljaren som satt i ställverket vid Hamra transformatorstation utanför Enköping. Överhettning har uppgivits som fel... På sid 15: driftchefen på Hamra, Hilding Ädel. Foto: Weine Lexius, Expressen.

12:57 – A big hole in the transmission network – No loss of generation

- 2 connections North-South lost
- Important infeed to Stockholm area lost
- No loss of generation
- No change in frequency
- Significantly reduced voltage in mid Sweden
- 6 seconds after the earth-fault a 220 kV line feeding Stockholm tripped due to overload (underimpedance Zone 3)
- Voltages in Southern Sweden kept up by the nuclear generation in Ringhals, Oskarshamn and Barsebäck
- Subsequent voltage reduction in Southern Sweden due to tap-changer stepping and load recovery

12:58 – Blackout in Southern Sweden

- Stable transmission system voltage and frequency in the very south, close to Barsebäck – See recordings, immediately before the breakdown
- 53 seconds after the earth-fault
 - Distance protection zone 3 finally started to trip lines
- Voltage instability was discovered in Sweden ...
- The role of zone 3 in transmission grids to be discussed/investigated

Ref: Operational experience of load shedding and new requirements on frequency relays | IET Conference Publication | IEEE Xplore

2003-09-23 Swedish Blackout – 5000 MW lost

Damaged Disconnector

Recordings from Mid Sweden

Plenty of time to take remedial actions, triggered by the low voltage

Tap Changer 400/130 kV South East Sweden

TC-position Simpevarp

EU project recordings on Öland summer 2003

DNV DNV ©

Voltage Magnitude 50 kV, 2003-09-23

Frequency on a 50 kV bus

Frequency from 3 different buses – 50 kV

DNV

Concluding Remarks

- There is a lot to learn from the history
- Proper time stamped recordings is of utmost importance for reliable disturbance investigations
- Disconnectors are critical sources of fault Disconnectors are being removed
- ABC-switchgears are redesigned to double-bus double-breaker design
- Maximum mesh of the system can be questioned
- We are facing a transition towards more and more inverter connected weather dependant generation, which adds new types of "disturbances", e.g. due to unexpected shift in weather conditions
- There is a great potential for protection systems for the southern part of Sweden based on PMUs and communication.

A trusted voice to tackle global transformations - DNV can and will make a difference

Daniel Karlsson

daniel.Karlsson@dnv.com +46-732-498923

www.dnv.com

SAFER, SMARTER, GREENER

The trademarks DNV GL[®], DNV[®], the Horizon Graphic and Det Norske Veritas[®] are the properties of companies in the Det Norske Veritas group. All rights reserved.